Calcium channel activation facilitated by nitric oxide in retinal ganglion cells.

نویسندگان

  • K Hirooka
  • D E Kourennyi
  • S Barnes
چکیده

We investigated the modulation of voltage-gated Ca channels by nitric oxide (NO) in isolated salamander retinal ganglion cells with the goals of determining the type of Ca channel affected and the signaling pathway by which modulation might occur. The NO donors, S-nitroso-N-acetyl-penicillamine (SNAP, 1 mM) and S-nitroso-cysteine (1 mM) induced modest increases in the amplitude of Ca channel currents recorded with ruptured- and permeabilized-patch techniques by causing a subpopulation of the Ca channels to activate at more negative potentials. The Ca channel antagonists omega-conotoxin GVIA and nisoldipine each reduced the Ca channel current partially, but only omega-conotoxin GVIA blocked the enhancement by SNAP. The SNAP-induced increase was blocked by oxadiazolo-quinoxaline (50 microM), suggesting that the NO generated by SNAP acts via a soluble guanylyl cyclase to raise levels of cGMP. The membrane-permeant cGMP analog 8-(4-chlorophenylthio) guanosine cyclic monophosphate also enhanced Ca channel currents and 8-bromo guanosine cyclic monophosphate (1 mM) occluded enhancement by SNAP. Consistent with these results, isobutyl-methyl-xanthine (IBMX, 10 microM), which can raise cGMP levels by inhibiting phosphodiesterase activity, increased Ca channel current by the same amount as SNAP and occluded subsequent enhancement by SNAP. Neither IBMX, the cGMP analogs, nor SNAP itself, led to activation of cGMP-gated channels. N-[2-(methylamino)ethyl]-5-isoquinoline-sulfonamide (2 microM), a broad spectrum inhibitor of protein kinase activity, KT5823 (1 microM), a specific protein kinase G (PKG) inhibitor, and a peptide inhibitor of PKG (200 microM) blocked SNAP enhancement, as did 5'-adenylylimidophosphate (1.5 mM), a nonhydrolyzable ATP analog that prevents protein phosphorylation. A peptide inhibitor of protein kinase A (10 nM) did not block the facilitory effects of SNAP. Okadaic acid (1 microM), a phosphatase inhibitor, had no effect by itself but increased the enhancement of Ca channel current by SNAP. These results suggest that NO modulates retinal ganglion cell N-type Ca channels by facilitating their voltage-dependent activation via a mechanism involving guanylyl cyclase/PKG-dependent phosphorylation. This effect could fine-tune neural integration in ganglion cells or play a role in ganglion cell disease by modulating intracellular calcium signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells

Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...

متن کامل

Nitric Oxide: A Review of Its Role in Retinal Function and Disease

Nitric oxide synthase (NOS), the enzyme that catalyzes the formation of nitric oxide from L-arginine, exists in three major isoforms, neuronal, endothelial, and immunologic. Neuronal and endothelial isoforms are constitutively expressed, and require calcium for activation. Both of these isoforms can be induced (i.e., new protein synthesis occurs) under appropriate conditions. The immunologic is...

متن کامل

The role of N-methyl-D-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells.

PURPOSE Elevated plasma homocysteine has been implicated in glaucoma, a vision disorder characterized by retinal ganglion cell death. The toxic potential of homocysteine to ganglion cells is known, but the mechanisms are not clear. A mechanism of homocysteine-induced death of cerebral neurons is via N-methyl-D-aspartate (NMDA) receptor overstimulation, leading to excess calcium influx and oxida...

متن کامل

Neuroprotection in Glaucoma

Glaucoma is a degenerative optic neuropathy characterized by retinal ganglion cell (RGC) loss and visual field defects. It is known that in some glaucoma patients, death of RGCs continues despite intraocular pressure (IOP) reduction. Neuroprotection in the field of glaucoma is defined as any treatment, independent of IOP reduction, which prevents RGC death. Glutamate antagonists, ginkgo biloba ...

متن کامل

cGMP modulates spike responses of retinal ganglion cells via a cGMP-gated current.

Certain ganglion cells in the mammalian retina are known to express a cGMP-gated cation channel. We found that a cGMP-gated current modulates spike responses of the ganglion cells in mammalian retinal slice preparation. In such cells under current clamp, bath application of the membrane-permeant cGMP analog (8-bromo-cGMP, 8-p-chlorophenylthio-cGMP) or a nitric oxide donor (sodium nitroprusside,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 83 1  شماره 

صفحات  -

تاریخ انتشار 2000